अमूर्त
Quantitative three-dimensional assessment of buccal alveolar bone thickness with dental cone-beam computed tomography
Salmeh Kalbassi, Foong Weng Chiong, Hwang Yee Cheau, Wong Hung Chew
Objectives: The purpose of this study was to develop a procedure for quantifying the buccal alveolar bone thickness surrounding each tooth prior to orthodontic treatment in 3D, using CBCT.
Methods: This retrospective cross-sectional study was carried out on 18 Singaporean Chinese patients. A total of 18 CBCT scans met the inclusion criteria, resulting in a sample size of 85 teeth, using two kinds of CBCT scanners. All CBCT data were stored in DICOM format. Buccal Alveolar bone thickness was measured after defining the boundaries of each individual tooth and surrounding alveolar bone using Kruskal-Wallis, Mann-Whitney U-test, and linear regression for statistical analysis.
Results: There was statistical significant difference in buccal bone thickness between incisor versus premolar, incisor versus molar, canine versus premolar, Canine and premolar versus molar. However, the difference between incisors and canines and between central and lateral incisors was not significant. There was also no statistical significant difference in the buccal bone thickness between maxillary and mandibular incisors, between maxillary and mandibular central incisors, and between maxillary and mandibular lateral incisors, neither between maxillary and mandibular canines.
Conclusions: The thickness of buccal bone is lowest in the incisor and canine reigns with no statistically significant difference between canines and incisors. The thickness of the alveolar bone in premolar region is significantly greater than incisor and canine regions but lesser than molar region. No statistically significant differences were found regarding buccal bone thickness between maxillary and mandibular incisors and canines.